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Abstract

In this work, authors present a new theorem and corollary on multi-dimensional
Laplace transformations. They also develop some applications based on this
results. The one-dimensional Laplace transformation is useful to obtain the
solution of partial fractional differential equations.

1. Introduction and Notation

Engineering and other areas of sciences can be successfully modelled
by the use of fractional derivatives. That is because of the fact that, a
realistic modelling of a physical phenomenon having dependence not only
at the time instant, but also the previous time history can be successfully
achieved by using fractional calculus. Fractional differential equations
arise in unification of diffusion and wave propagation phenomenon. The
time fractional heat equation, which is a mathematical model of a wide
range of important physical phenomena, is a partial differential equation
obtained from the classical heat equation by replacing the first time
derivative by a fractional derivative of order o, 0 < o < 1.
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In the next part of this section, we consider the time fractional heat

equation (time fractional in the-Caputo sense).

In this section, we consider methods and results for the partial
fractional diffusion equation, which arise in applications. Several
methods have been introduced to solve fractional differential equations,
the popular Laplace transform method, [1], [2], [3], [11], the Fourier
transform method [10], the iteration method [17], and the operational
method [10]. However, most of these methods are suitable for special
types of fractional differential equations, mainly the linear with constant
coefficients. More detailed information about some of these results can be
found in a survey paper by Kilbas and Trujillo [9]. Atanackovic and
Stankovic [4, 5] used the Laplace transform in a certain space of
distributions to solve a system of partial differential equations with
fractional derivatives, and indicated that such a system may serve as a
certain model far a viscoelastic rod. Oldham and Spanier [12] and [13],
respectively, by reducing a boundary value problem involving Fick’s
second low in electroanalytic chemistry to a formulation based on the
partial Riemann-Liouville fractional with half derivative. Oldham and
Spanier [13] gave other application of such equations for diffusion
problems. Wyss [20] and Schneider [18] considered the time fractional
diffusion and wave equations, and obtained the solution in terms of Fox

functions.

2. Solution to Non-Homogeneous Partial Fractional
Differential Equation (Heat Equation)

0%u x
cDiu = a % 4 f(t) + '[ g(V)dh - ku, (1.1)
ox’ 0

where ¢t > 0,0 < x < [, a, A are constants. The boundary conditions are
u(x, 0) =0, u(0,¢t)=0, ult)=0.

Solution.

2 x
thau—aa—u+ku=f(t)+I g\)dr, O0<a<l.
ox> 0
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Taking one dimensional Laplace transform of both sides of the Equation

(1.1) with respect to ¢ (with assumption that o = %) [15]. We have:

T"(x, s) - (‘/_+k)U(x, s):—%{F(s)+§J‘:g(x)dk}. (1.2)

We obtain
- «/§+kx N «/§+kx
U(x,s)=ce' @ +cge ' @ 4

By using the boundary conditions, one gets the unknown constants ¢, ¢y

1 k{F(s)+%I:g(k)dk}. (1.3)

as follows:
oo P 1- S I s()dh
Vs +k \/ﬁ \/ﬁ s(x/_ + k) \/7 \/7
¢ F(s) e \/g‘;kl -1 .[ g()dh

:‘/;”e-\/%l—e\/&;k s([+k) r r

Therefore, relation (1.3) has the following form:

= _F(s) sinh k(x—l) sinh Jg k
(x’S)_‘/_ﬁLk x/_+k x/_+k
inh Vs +k
([ ) L .0
Vs ko inh\/‘/gc;kl

We may rewrite (1.4) as follows:

. Vs +k . Vs + k
o sinh (x-1) sinh x
Ulx, s) = sF(s) - f(0) a _ a +l
Vs + k . Vs +k . Vs + k
ssinh Tl ssinh Tl
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nh\/\/§+kl
a

~(70)+ [ g0y

£(0) sinh 1
Tsin ' T + NE (1.5)
a

+

At this point, we take inverse Laplace transform of (1.5) term wise. At
first, evaluating the inverse Laplace transform of the term ;,
Vs +k
1
Vs + &

11 gyl kR
@1+£}_L {Jg(l \/§+S )}

NS

L b= L7

-1

- 11 ZOO DR 2200 Mt% (1.6)

n=0 n+l

n+l n=0 n+1
52 F( 5 ]

By using relation (1.6), we obtain:

-1 8(8) = F0)y _ p-1g.p(q) - L1 1
LT 1 s e) - o)+ 2

N Z:oi(,ll)—zklrl)_[ fre - n)nTl (1.7)
2

If the first term on the left side of (1.5) is called H;(s), then one has,

; sinh @+kx sinh @+k(l—x)
H1(3)=§— = 7

stk nn Y5t Ry
a a

ssinh

L sinh N§+kx x/_+k(l_
(1.8)

g ssmh\/ml Vs si h\/m

_E{
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and we also set P, (x/g ) in the following form:

sinh J_ Tk, k (I-x)
ARE)= T ) f k, Vs + k
Vs sinh ki \/g sinh Sa+ l
By replacing Vs by s, we have:
. k
sinh ke sinh (I-x)

Pi(s) = (1.9)

k)

_ a
s sinh 1/—[ s sinh
a

Now, upon using residue theorem, we may find the inverse Laplace

sinh /2% kx

transform of the term P;(s). First, we find the ri— Vv a  we
. s+k
ssinh l
a
have
s=0,
s sinh S_C:kl:0:> 2 92

Let us calculate residue at s = 0, that is,

%! sinh 1’ S+ kx sinh \/Ex
hrr(l)(s -0) = a
= s sinh |5 kz sinh \/gz

and residues at s =s,,, m =0, 1, 2, 3, --- are

e’ smh,f +k % sinh S+kx 1
_va ;

lim (s —s,,)———F—2%——= lim x lim
S8y, l S8y, S $S=>S, | . s+ k

sinh

ssinh

2.2
- k+m Ta t
e 2 sinh| —— mmi x
1 1
X
a

U cosh(mmni)
2va mrniva
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m2n2a

_ Zmma(- D7 [k 2 } Sin(ﬂx)
iklz+m2n2ai l ’

so that

sinh w/ﬂx
Lfl a
s

+kl

s sinh

k m2n
smh - ﬁat
Y = vy
m=0|Ll* + m°n“a
sinh l

If we replace x by (I — x) in (1.10), then:

. sinhwfs:;k(l—x) sinhwfg(l—x)
L~ =
ssinh \/ﬂz sinh 1/@z
a a

2n2a

T N m(-1)" e b (m B
+ 4rnae Zm Om) sin i (l

Therefore,

pi(t)

_[E 2,2
sinh 7% —mna

sin(M x)
] .

(1.10)

x)j. (1.11)

ht m(-1)" . (mn )
=1-{——=—+4nae sin| — x
sinh kl Zm Oikl2 + mznzai l

2 2
sinh l x) m Jn T at
I i Pt} : m(-1)
+4nae” o
sinh l

(—l)m+1 sin(mx)
ikl2 + m2n2ai l
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sinh \/7 sinh \/7 (I-x)
sinh \/7 l sinh \/El
a
2n2

- 47tcufktZ:OO m((-)" +1) t sin(% x) (1.12)

m= Oikl2 + mznzai

Using the following formula, we arrive at the inverse Laplace transform

of H(s).
) 2
O = L A = [ o - itras

s1nh\/7 s1nh\/7[—t)
P T

_ 4ma m((-1)" +1
Zmo (D)™ +1)

ikl“Z +m n2ai

2

[ e _at)
0 P 4t

smh\/7 s1nh\/7(l—t) 1 J.oo [ xzjdx
smh\/7l sin h\/7l

1)m+1)
—4a\/7 Zm Oikl2 + m2n ai

+(k+mna)f)2 ( m?‘nza)zt

o (=
x sin(% t)j e 2t ? dx,
0
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in the first integral, if we set *_ — 4 and in the second integral Xy
2t 24t
m?n’a
k+ 3 Vi = w, then one has:
l

sinh \/7 sinh \/7 (1- t)
h(t)=(1- 2
sinh \/71 sinh \/71
a a

24
2
o m(- 1)m+1) (ks Pt m?n’a
- nazm 0T - m2n2a ! sm( jerfc (k+

(1.13)

Similarly, we get hy(t) as follows:

. ) sinh Jg; kx 1 sinh \/EaJr kx
LHH,y(s)) = I - = .
Js
s sinh \/;a+ kl y Vs sinh J;(: kl

. Vs + k
sinh X sinh
If Py(Vs)= a then Py(s)=— 1 &

= 7 , , where 1its
x/;sinhwf Sa+ kl ssinh

inverse Laplace transform is as follows:

sinh \/E m —@t
palt) = + 4nae” ktz (—);n(— 1)2 3 sin(M xj
Slnh \/7[ m=0 kl +mna l

Therefore,

) 2
ho(t) = L7 {% P, (JE)} = % J.O exp(— \;—tjpz (v)dv

(1.14)
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ol
il )

0 2\ —kx- x
4Tca Z m((-1)" + 1) n( t)J‘ exp[— x_]e 2 gy

T a

2_2
Letting = u 1in the first integral and Zf/_ + (k L aj I =w In
t

X
ot

the second integral, we get:

sinh
hy(t) =
sinh \/7 l

+4mzw m((=1)" +1) (k22 tSIIl( )erfc((k-i- m*n’a J

m=0 (]2 +m2n2a

(1.15)
we obtain hg(¢) by similar method of calculation,
; sinh k (I-x) 1 |7 sinh k (I-x)
B = e | |G Gon |
s sinh | Y25 x/gsinh\/ SR
a a
(1.16)
1 sinh s + (l-x
Setting P3(\/;) =—= - a and replacing Vs by s, then
Vs «/_ + k
Vs sinh
one gets
sinh l - x)
Py(s) = :

ssinh \/—l
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s1nh\/7(l x)

p3(t) =1~
smh1/ =1
a
m T[ a

N m(=1)" -(m_)
4nae Zm Om sin ] (l .X‘)

sinh \/7 (I-x)
sinh \/7 l
a
m2ﬁ2a

+ 41tae_kt Z: O(}%} I sin(% x) (117)
n
0 2
hs(t) = L7 {% Py (JE)} = %J.O exp(— \:L_tjp3 (v)dv

sinh \/7(1 _t) 1 J'Ooex [_ ﬁjdv
sinh \/71 p

| 4ma Z m(-1)"
m= Oikl2 + m2n2ai
2 2
0 2 L g a,
X sin(% xjj exp[— \;—t}z ! dv.
0
X

As before, supposing *_—u in the first integral and —= +

ot o/t
2 2

(k + 2 lg ajx/_ = w 1n the second integral, then:
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2_2

. mo (AR

+amay " m(-1) 2
m=

ikl2 + m2n2ai

2 2
X sin(% t)erfc((k + lg a )«/ZJ (1.18)

Finally, the inverse Laplace transform of (1.5) is:

u(x, t) = Z::() i—(i/el’lj _[ sinh \/}:jil £)
9 sin

sinh l-t-¢ n-1
\/7 JO f'&—=mnn 2 dn)dg

2 2
(kT 221 ¢)

4nazm Ozn . m((gl le)lrSJr(;;r (- 1): )2/%’:) .[o e 2

- m2nla 3 n-l
x sin(T (t - F,))erfc[(k + 2 Wt - &J(J-O f'(E—=mn 2 dn)dg

w n n-1 sinh /=&
~(O+ [ san (Y S [Ny e g
( D) ) sinh El

m((- )"+ (1) L=
vy 3 (n+1)(kz;+mzn2a)j (-2

X e 2 "e sm( )erfc[(k + m’r’a )\/_]dci
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(- 1)"k" n-1 _smh\/7
{Zno (n;ljj( RS smh\/;l

+4mzm Ozn 0 n+1
e

)m+n kn

k% + mznza)

2_2
(k+mna2

XJ‘;(t_é)"T_lxe 12 )gsin(”} jer}‘c((kJr 212 )J—]dg}

3. Conclusion

The paper is devoted to study and application of one-dimensional

Laplace transform. The one-dimensional Laplace transform provides

powerful method for analyzing linear systems. The main purpose of this

work is to develop a method for finding analytic solution of the time

fractional heat equation.
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